FitzHugh-Nagumo model

We consider a two identical cells network, symmetrically coupled with the FitzHugh-Nagumo model.

\begin{equation*} \begin{cases} \dot{v}_1 = v_1(a-v_1)(v_1-1)- w_1 -c v_2 \\ \dot{w}_1 = b v_1-\gamma w_1 \\ \dot{v}_2 = v_2(a-v_2)(v_2-1)- w_2 -c v_1 \\ \dot{w}_2 = b v_2-\gamma w_2 \end{cases} \end{equation*}
An increase of the coupling parameter \(c\) lets a periodic regime appear [Golubitsky and Stewart (2006)]. You can make your own simulation of the model: enter a decimal value between \( 0 \) and \( 1 \) for the parameter \( c \).


\(c = \) You must enter a decimal number between $0$ and $1$.

FitzHugh-Nagumo model


M. Golubitsky and I. Stewart. Nonlinear dynamics of networks: the groupoid formalism. Bulletin of the American Mathematical Society, 43(3):305–364, 2006.