Mathematics teacher, Lycée Claude Monet, Le Havre, France.

PhD student (third year) in Laboratory of Applied Mathematics, Le Havre, France.
Supervisor: M.A. Aziz-Alaoui. Advisor: Nathalie Verdière.


Université du Havre
UFR Sciences & Technologies
25, rue Philippe Lebon, 76063,
BP 1123
Le Havre cedex, France


Contact: guillaumecantin@mail.com


2017


Non identical coupled networks with a geographical model for human behaviors during catastrophic events, submitted in International Journal of Bifurcation and Chaos (in revision).

Comportement asymptotique dans un système de réaction-diffusion pour un modèle géographique, VIe Colloque EDP-NORMANDIE (poster).

Control of panic in a non-identical coupled network with a geographical model, PhysCon 2017, Firenze (Italy).
Proceedings in the IPACS library. PDF CITE

Multiple Hopf bifurcations in coupled networks of planar systems, Workshop on Advance on Nonlinear Complex Systems and Applications, Le Havre (France).
Proceedings of the conference. PDF CITE

Comportement asymptotique dans un réseau de systèmes de réaction-diffusion pour un modèle géographique, Journée de la Fédération Normandie-Mathématiques, Rouen (France).

Modélisation des phénomènes de diffusion pour un problème géographique, Séminaire des Doctorants du LMAH, Le Havre (France).


2016


Non identical coupled reaction-diffusion systems for a geographical model of human behaviors during catastrophic events, Rencontres Rouennaises EDP 2016 (poster).

Mathematical modeling of human behaviors during catastrophic events: Stability and Bifurcations, in International Journal of Bifurcation and Chaos. PDF CITE

Coupled networks for a geographical problem, journée MathBio, Le Havre (France).

Stabilité et bifurcations dans un modèle géographique, Séminaire des Doctorants du LMAH, Le Havre (France).


2015


Analyse mathématique des comportements humains en situation de catastrophe, Colloque de la Société Francophone de Biologie Théorique, Poitiers (France). Abstract

Understanding and simulation of human behaviors in areas affected by disasters: from the observation to the conception of a mathematical model, in Global Journal of HUMAN-SOCIAL SCIENCE: H Interdisciplinary.


Dynamical systems and bifurcation theory.

Birth of limit cycles in near-hamiltonian planar polynomial systems. Melnikov method.

Mathematical modeling of human behaviors during catastrophic events, in collaboration with geographers. Epidemiological models. Prey-predators models.

Parabolic partial differential equations. Reaction-diffusion systems. Coupled networks of reaction-diffusion systems. Exponential attractors.

Numerical simulations of evolution problems. Splitting schemes. Turing patterns. Damped oscillations.